
Operating System

Unit I

Unit I : Agenda

• What is an Operating System?

• Computer-System Organization

• Computer-System Architecture

• Operating-System Structure

• Kernel Data Structures

• Computing Environments

• Open-Source Operating Systems

What is an Operating System?

• A program that acts as an intermediary between a
user of a computer and the computer hardware

• Operating system goals:

▫ Execute user programs and make solving user
problems easier

▫ Make the computer system convenient to use

▫ Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components:
▫ Hardware – provides basic computing resources

 CPU, memory, I/O devices

▫ Operating system
 Controls and coordinates use of hardware among various

applications and users

▫ Application programs – define the ways in which the
system resources are used to solve the computing
problems of the users
 Word processors, compilers, web browsers, database

systems, video games

▫ Users
 People, machines, other computers

Four Components of a Computer System

What Operating Systems Do

• Users want convenience, ease of use and good
performance
▫ Don’t care about resource utilization

• But shared computer such as mainframe or
minicomputer must keep all users happy

• Users of dedicate systems such as workstations have
dedicated resources but frequently use shared resources from
servers

• Handheld computers are resource poor, optimized for
usability and battery life

• Some computers have little or no user interface, such as
embedded computers in devices and automobiles

Operating System Definition

• OS is a resource allocator

▫ Manages all resources

▫ Decides between conflicting requests for efficient and
fair resource use

• OS is a control program

▫ Controls execution of programs to prevent errors and
improper use of the computer

Computer System Organization

• Computer-system operation
▫ One or more CPUs, device controllers connect through

common bus providing access to shared memory

▫ Concurrent execution of CPUs and devices competing for
memory cycles

Storage Definitions and Notation Review

The basic unit of computer storage is the bit. A bit can contain one of two values, 0 and 1.
All other storage in a computer is based on collections of bits. Given enough bits, it is
amazing how many things a computer can represent: numbers, letters, images, movies,
sounds, documents, and programs, to name a few. A byte is 8 bits, and on most computers
it is the smallest convenient chunk of storage. For example, most computers don’t have an
instruction to move a bit but do have one to move a byte. A less common term is word,
which is a given computer architecture’s native unit of data. A word is made up of one or
more bytes. For example, a computer that has 64-bit registers and 64-bit memory
addressing typically has 64-bit (8-byte) words. A computer executes many operations in its
native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured and
manipulated in bytes and collections of bytes.
A kilobyte, or KB, is 1,024 bytes
a megabyte, or MB, is 1,0242 bytes
a gigabyte, or GB, is 1,0243 bytes
a terabyte, or TB, is 1,0244 bytes
a petabyte, or PB, is 1,0245 bytes

Computer manufacturers often round off these numbers and say that a megabyte is 1
million bytes and a gigabyte is 1 billion bytes. Networking measurements are an exception
to this general rule; they are given in bits (because networks move data a bit at a time).

Computer-System Architecture

• Most systems use a single general-purpose processor
▫ Most systems have special-purpose processors as well

• Multiprocessors systems growing in use and importance
▫ Also known as parallel systems, tightly-coupled systems

▫ Advantages include:
1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault
tolerance

▫ Two types:
1. Asymmetric Multiprocessing – each processor is assigned a

specie task.

2. Symmetric Multiprocessing – each processor performs all
tasks

Operating System Structure

• Multiprogramming (Batch system) needed for efficiency

▫ Single user cannot keep CPU and I/O devices busy at all times

▫ Multiprogramming organizes jobs (code and data) so CPU always has one to execute

▫ A subset of total jobs in system is kept in memory

▫ One job selected and run via job scheduling
▫ When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU

switches jobs so frequently that users can interact with each job while it is running, creating

interactive computing

▫ Response time should be < 1 second

▫ Each user has at least one program executing in memoryprocess
▫ If several jobs ready to run at the same timeCPU scheduling
▫ If processes don’t fit in memory, swapping moves them in and out to run

▫ Virtual memory allows execution of processes not completely in memory

Operating-System Operations

• Interrupt driven (hardware and software)

▫ Hardware interrupt by one of the devices

▫ Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service

 Other process problems include infinite loop, processes

modifying each other or the operating system

Operating-System Operations (cont.)

• Dual-mode operation allows OS to protect itself and
other system components
▫ User mode and kernel mode
▫ Mode bit provided by hardware

 Provides ability to distinguish when system is running
user code or kernel code

 Some instructions designated as privileged, only
executable in kernel mode

 System call changes mode to kernel, return from call
resets it to user

• Increasingly CPUs support multi-mode operations
▫ i.e. virtual machine manager (VMM) mode for

guest VMs

Kernel Data Structures
The kernel data structures are very important as they store data about the
current state of the system.

Process Table
The process table stores information about all the processes running in the system. These
include the storage information, execution status, file information etc.

File Table
The file table contains entries about all the files in the system. If two or more processes use the
same file, then they contain the same file information and the file descriptor number.
Each file table entry contains information about the file such as file status (file read or file
write), file offset etc. The file offset specifies the position for next read or write into the file.

V-Node and I-Node Tables
The v-node is an abstract concept that defines the method to access file data without worrying
about the actual structure of the system. The i-node specifies file access information like file
storage device, read/write procedures etc.

Open-Source Operating Systems

• Operating systems made available in source-code
format rather than just binary closed-source

• Counter to the copy protection and Digital
Rights Management (DRM) movement

• Started by Free Software Foundation (FSF),
which has “copyleft” GNU Public License (GPL)

• Examples include GNU/Linux and BSD UNIX
(including core of Mac OS X), and many more

• Can use VMM like VMware Player (Free on
Windows), Virtualbox

▫ Use to run guest operating systems for exploration

Operating System Services

• Operating systems provide an environment for execution of
programs and services to programs and users

• One set of operating-system services provides functions that are
helpful to the user:

▫ User interface - Almost all operating systems have a user
interface (UI).

 Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

▫ Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

▫ I/O operations - A running program may require I/O, which
may involve a file or an I/O device

Operating System Services (Cont.)

▫ File-system manipulation - The file system is of particular
interest. Programs need to read and write files and directories,
create and delete them, search them, list file Information,
permission management.

▫ Communications – Processes may exchange information, on the
same computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

▫ Error detection – OS needs to be constantly aware of possible
errors

 May occur in the CPU and memory hardware, in I/O devices, in
user program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user ’ s and
programmer’s abilities to efficiently use the system

Operating System Services (Cont.)

• Another set of OS functions exists for ensuring the efficient operation
of the system itself via resource sharing

▫ Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

▫ Accounting - To keep track of which users use how much and what
kinds of computer resources

▫ Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with
each other

 Protection involves ensuring that all access to system resources
is controlled

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

A View of Operating System Services

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application

Programming Interface (API) rather than direct system

call use

• Three most common APIs are Win32 API for Windows, POSIX

API for POSIX-based systems (including virtually all versions

of UNIX, Linux, and Mac OS X), and Java API for the Java

virtual machine (JVM)

Example of System Calls

• System call sequence to copy the contents of one
file to another file

API – System Call – OS Relationship

Types of System Calls

• Process control
▫ create process, terminate process
▫ end, abort
▫ load, execute
▫ get process attributes, set process attributes
▫ wait for time
▫ wait event, signal event
▫ allocate and free memory
▫ Dump memory if error
▫ Debugger for determining bugs, single step

execution
▫ Locks for managing access to shared data between

processes

Types of System Calls

• File management
▫ create file, delete file
▫ open, close file
▫ read, write, reposition
▫ get and set file attributes

• Device management
▫ request device, release device
▫ read, write, reposition
▫ get device attributes, set device attributes
▫ logically attach or detach devices

Types of System Calls (Cont.)

• Information maintenance
▫ get time or date, set time or date
▫ get system data, set system data
▫ get and set process, file, or device attributes

• Communications
▫ create, delete communication connection
▫ send, receive messages if message passing model to host name or

process name
 From client to server

▫ Shared-memory model create and gain access to memory regions
▫ transfer status information
▫ attach and detach remote devices

• Protection
▫ Control access to resources
▫ Get and set permissions
▫ Allow and deny user access

Examples of Windows and Unix System Calls

Operating System Structure

• General-purpose OS is very large program

• Various ways to structure ones

▫ Simple structure – MS-DOS

▫ More complex -- UNIX

▫ Layered – an abstraction

▫ Microkernel -Mach

Simple Structure -- MS-DOS

• MS-DOS – written to
provide the most
functionality in the
least space

▫ Not divided into
modules

▫ Although MS-DOS has
some structure, its
interfaces and levels of
functionality are not
well separated

Non Simple Structure -- UNIX

UNIX – limited by hardware functionality,
the original UNIX operating system had
limited structuring. The UNIX OS consists of
two separable parts
▫ Systems programs
▫ The kernel

 Consists of everything below the system-call
interface and above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system
functions; a large number of functions for one
level

Traditional UNIX System Structure
Beyond simple but not fully layered

Layered Approach

• The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is the
user interface.

• With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers

Microkernel System Structure

• Moves as much from the kernel into user space
• Mach example of microkernel
▫ Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules
using message passing

• Benefits:
▫ Easier to extend a microkernel
▫ Easier to port the operating system to new architectures
▫ More reliable (less code is running in kernel mode)
▫ More secure

• Detriments:
▫ Performance overhead of user space to kernel space

communication

Hybrid Systems

• Most modern operating systems are actually not one
pure model
▫ Hybrid combines multiple approaches to address

performance, security, usability needs
▫ Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of
functionality

▫ Windows mostly monolithic, plus microkernel for
different subsystem personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment
▫ Below is kernel consisting of Mach microkernel and BSD

Unix parts, plus I/O kit and dynamically loadable
modules (called kernel extensions)

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS

• Apple mobile OS for iPhone, iPad
▫ Structured on Mac OS X, added

functionality
▫ Does not run OS X applications

natively
 Also runs on different CPU

architecture (ARM vs. Intel)
▫ Cocoa Touch Objective-C API for

developing apps
▫ Media services layer for graphics,

audio, video
▫ Core services provides cloud

computing, databases
▫ Core operating system, based on Mac

OS X kernel

Android
• Developed by Open Handset Alliance (mostly Google)

▫ Open Source
• Similar stack to IOS
• Based on Linux kernel but modified

▫ Provides process, memory, device-driver management
▫ Adds power management

• Runtime environment includes core set of libraries
and Dalvik virtual machine
▫ Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

• Libraries include frameworks for web browser
(webkit), database (SQLite), multimedia, smaller libc

